$\mathcal{P} \mathcal{T}$-symmetric regularizations in supersymmetric quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 3710209
(http://iopscience.iop.org/0305-4470/37/43/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.64
The article was downloaded on 02/06/2010 at 19:28

Please note that terms and conditions apply.

$\mathcal{P} \mathcal{T}$-symmetric regularizations in supersymmetric quantum mechanics

Miloslav Znojil
Ústav jaderné fyziky AV ČR, 25068 Řež, Czech Republic
E-mail: znoji1@ujf.cas.cz

Received 16 January 2004, in final form 14 April 2004
Published 14 October 2004
Online at stacks.iop.org/JPhysA/37/10209
doi:10.1088/0305-4470/37/43/013

Abstract

Within supersymmetric quantum mechanics the necessary regularization of the poles of the superpotentials on the real line of coordinates x may be most easily mediated by a small constant shift of this axis into the complex plane. Detailed attention is paid here to the resulting recipe which works, in effect, with nonHermitian (a.k.a. $\mathcal{P} \mathcal{T}$-symmetric or pseudo-Hermitian) Hamiltonians. Besides an exhaustive discussion of the role of the complex spike in harmonic oscillator, we mention also some applications concerning the regularized versions of the Smorodinsky-Winternitz and Calogero models and of the relativistic KleinGordon equation.

PACS numbers: $03.65 . \mathrm{Fd}, 03.65 . \mathrm{Ca}, 03.65 . \mathrm{Ge}, 11.30 . \mathrm{Pb}, 12.90 . \mathrm{Jv}$

1. Introduction: symmetries

The concept of symmetry proves extremely productive in various branches of physics. In particular, its applications in quantum mechanics simplify the analysis of the properties of a symmetric system characterized by the commutativity of its Hamiltonian $H_{S Y}$ with some operators $S=S_{\mathrm{SY}}$ which are tractable as elements of a Lie algebra of symmetries $\mathcal{G}_{(\mathrm{SY})}$. Such additional information about the Schrödinger bound-state problem simplifies its solution. For example, during the construction of bound states in a D-dimensional central potential, the use of its symmetry $\mathcal{G}_{(\mathrm{SY})}=\operatorname{so}(D)$ enables us to reduce the partial differential Schrödinger equation to its exactly solvable angular part $S_{(\mathrm{SY})}|n\rangle=\ell(\ell+1)|n\rangle$, accompanied by the ordinary radial differential equation.

A schematic illustration of such a method is provided by the $D=1$ Hamiltonian

$$
\begin{equation*}
H_{\mathrm{SY}}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{\mathrm{SY}}(x) \quad x \in(-\infty, \infty) \tag{1}
\end{equation*}
$$

where the real and confining potential is chosen as spatially symmetric, $V_{\mathrm{SY}}(x)=V_{\mathrm{SY}}(-x)$. This means that the Hamiltonian itself commutes with the operator of the parity $S_{\mathrm{SY}} \equiv \mathcal{P}$. Each bound state $|n\rangle$ must be an eigenstate of both the Hamiltonian $H_{S Y}$ and the operator(s) $S_{\text {SY }}$ so that we may select its parity in advance and, then, evaluate the wavefunction $|n\rangle$ on the mere half-axis of $x \in(0, \infty)$.

Beyond the similar Lie-algebraic applications, a natural generalization of the concept of symmetry is encountered in the so-called supersymmetric quantum mechanics (SUSY QM, cf the review paper [1]) and in the so-called $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics (PTSY QM, cf its recent formulations in $[2,3])$. In these two cases, the linear Lie algebra of symmetries $\mathcal{G}_{(\mathrm{SY})}$ is replaced by a graded Lie algebra $\mathcal{G}_{\text {(SUSY) }}$ and by its antilinear (i.e., strictly speaking, nonlinear) analogue $\mathcal{G}_{\text {(PTSY) }}$, respectively. Here we intend to pay attention to the various combinations of these two possibilities.

In the former context, transition to SUSY QM is based on a deeper mathematical interpretation of the creation and annihilation operators. On a less abstract level, SUSY QM works with the doublets of the [say, 'left' (or ${ }_{L}$-subscripted) and 'right' (or ${ }_{R}$-subscripted)] Hamiltonians arranged in a single super-Hamiltonian

$$
H_{\mathrm{SUSY}}=\left[\begin{array}{cc}
H_{(\mathrm{L})} & 0 \tag{2}\\
0 & H_{(\mathrm{R})}
\end{array}\right] \quad H_{(\mathrm{L}, \mathrm{R})}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{(\mathrm{L}, \mathrm{R})}(x)
$$

which commutes with the two matrix operators which are called super charges,

$$
S_{\mathrm{SUSY}, A}=\left[\begin{array}{cc}
0 & 0 \tag{3}\\
A & 0
\end{array}\right] \equiv \mathcal{Q} \quad S_{\mathrm{SUSY}, B}=\left[\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right] \equiv \tilde{\mathcal{Q}}
$$

In 1981, Witten [4] noted the relevance of such a model for clarification of the absence of any SUSY partners of the observable elementary particles. He tried to attribute their 'invisibility in experiments' to the spontaneous breakdown of SUSY. Paradoxically, during the last 20 years, the idea found the majority of its applications within non-relativistic quantum mechanics [5]. ${ }^{1}$

The history of the SUSY-inspired search for a symmetry between bosons and fermions is not too dissimilar to the recent development of PTSY QM which also finds some of its key physical motivations within the relativistic quantum field theory [6]. Many open questions concern the mathematics of PTSY and, in particular, a deeper understanding of its spontaneous breakdown [7]. Simplified PTSY QM models are studied, based on the presence of the two real potentials in a single, non-Hermitian Hamiltonian

$$
\begin{equation*}
H_{\mathrm{PTSY}}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{S}(x)+\mathrm{i} V_{A}(x) \quad x \in(-\infty, \infty) \tag{4}
\end{equation*}
$$

The two components $V_{S}(x)=V_{S}(-x)$ and $V_{A}(x)=-V_{A}(-x)$ of the complexified force are, by assumption, spatially symmetric and antisymmetric functions, respectively. The Hamiltonian commutes, this time, with the product $S_{\text {PTSY }} \equiv \mathcal{P} \cdot \mathcal{T}$ of the parity \mathcal{P} with an auxiliary antilinear operator \mathcal{T} which mimics the time reversal [2].

In a broader context, operator \mathcal{P} may be generalized to any Hermitian and invertible 'metric' $\mathcal{P}=\mathcal{P}^{\dagger}$ (sometimes assumed to be positive definite [8]) while its partner \mathcal{T} mediates Hermitian conjugation [9,10]. This means that we may eliminate the explicit use of \mathcal{T} and treat the PTSY-related commutativity

$$
\begin{equation*}
S_{\mathrm{PTSY}} H_{\mathrm{PTSY}}-H_{\mathrm{PTSY}} S_{\mathrm{PTSY}}=0 \tag{5}
\end{equation*}
$$

as a mere pseudo-Hermiticity requirement [11]

$$
\begin{equation*}
H_{\mathrm{PTSY}}^{\dagger}=\mathcal{P} H_{\mathrm{PTSY}} \mathcal{P}^{-1} \tag{6}
\end{equation*}
$$

${ }^{1}$ Cf virtually all contributions to this special issue of J. Phys. A: Math. Gen.

The best known phenomenological, experimentally relevant Hamiltonians with the 'weakened Hermiticity' property (6) appear in the Feshbach-Villars version of the relativistic KleinGordon equation (cf section 5.2). More than 10 years ago, pseudo-Hermitian Hamiltonians also became popular in many phenomenological descriptions of the bosonic degrees of freedom within atomic nuclei [8].

We may summarize that the common Lie-algebraic S_{SY} finds its close parallels within SUSY QM and PTSY QM. In the present paper, we intend to develop, in due detail, several ideas which emerged in our papers [12-14] where we outlined some merits of a synchronized work within a combined $\mathcal{P} \mathcal{T}$-symmetric and superymmetric quantum mechanics (PTSUSY QM).

2. Conventional regularizations in SUSY QM

The key SUSY assumption of commutativity may be read, alternatively, as a factorization postulate for \mathcal{H},

$$
\left[\begin{array}{cc}
H_{(\mathrm{L})} & 0 \tag{7}\\
0 & H_{(\mathrm{R})}
\end{array}\right]=\left[\begin{array}{cc}
B A & 0 \\
0 & A B
\end{array}\right]
$$

This postulate implies the further relations

$$
\{\mathcal{Q}, \tilde{\mathcal{Q}}\}=\mathcal{H} \quad\{\mathcal{Q}, \mathcal{Q}\}=\{\tilde{\mathcal{Q}}, \tilde{\mathcal{Q}}\}=0 \quad[\mathcal{H}, \mathcal{Q}]=[\mathcal{H}, \tilde{\mathcal{Q}}]=0
$$

which, in their turn, enable us to treat the supercharges $S_{\text {SUSY }}$ as generators of the graded Lie algebra $s l(1 / 1)$.

Example (1) with the D-dimensional harmonic-oscillator (HO) $V_{(\mathrm{SY})}^{(\mathrm{HO})}(|\vec{r}|)=|\vec{r}|^{2}$ offers one of the most transparent illustrations of the essence of many of the characteristic ideas of SUSY QM. Thus, at $D=1$ one inserts the two differential operators $A=\partial_{x}+x$ and $B=-\partial_{x}+x$ of the first order in the explicit definition (3) of the two supercharge operators. The resulting explicit SUSY Hamiltonian (2) connects the two regular harmonic oscillators $H_{(\mathrm{L}, \mathrm{R})}^{(\mathrm{HO})}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2} \mp 1$. The wavefunctions pertaining to these oscillators are analytic and may serve, in parallel, as an illustration of a transition to the complexified coordinates x in PTSY QM of [2].

After a transition to $D>1$, equation (1) remains almost the same, complemented merely by a strongly singular kinetic term in $V_{S Y}(x) \rightarrow V_{S Y}(x)+V_{\text {kinetic }}(x)$ where $V_{\text {kinetic }}(x)=\ell(\ell+1) / x^{2}$ with $\ell=\ell(n)=(D-3) / 2+n$ and $n=0,1, \ldots$ [15]. Marginally, it is rather amusing to note that precisely the difference between the absence and presence of the strongly singular $V_{\text {kinetic }}(x)$ plays a key role in SUSY QM. Indeed, one of the characteristic features of the formalism of SUSY QM is the requirement of the absence of real poles in its partner potentials $V_{(\mathrm{L}, \mathrm{R})}$ (see, e.g., the review paper [1] for more details). Vice versa, a puzzling difficulty is immediately encountered when we try to study a SUSY model with such a singularity. During the detailed analysis of the central harmonic oscillator in $D>1$ dimensions, Jevicki and Rodrigues (JR, [16]) revealed that in such a singular case, the textbook recipes lead to a singular form of the HO superpotential,

$$
\begin{equation*}
W(x)=W^{(\gamma)}(x)=x-\frac{\gamma+1 / 2}{x} \tag{8}
\end{equation*}
$$

where γ may vary with D etc [13]. Then, at any real strength parameter γ, the naive SUSY algebra is well known to generate the formal partnership between the two harmonic oscillator Hamiltonian operators of the form $H^{(\kappa)}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}+\left(\kappa^{2}-1 / 4\right) / x^{2}$ where $\kappa=\kappa_{\mathrm{L}, \mathrm{R}}=\ell_{\mathrm{L}, \mathrm{R}}+1 / 2$ [1]. Of course, in order to satisfy the two factorization requirements in equation (7) we must define

$$
\begin{equation*}
H_{(\mathrm{L})}=H^{(\alpha)}-2 \gamma-2 \quad H_{(\mathrm{R})}=H^{(\beta)}-2 \gamma \tag{9}
\end{equation*}
$$

and put $\alpha=|\gamma|=\ell_{(\mathrm{L})}+1 / 2$ and $\beta=|\gamma+1|=\ell_{(\mathrm{R})}+1 / 2$. This means that people usually restrict their attention to the regular or 'linear' HO Hamiltonians $H^{(\pm 1 / 2)}$ defined on the whole axis of $x \in(-\infty, \infty)$ and possessing the well-known energy spectrum

$$
\begin{equation*}
E_{n}^{(\mathrm{LHO})}=2 n+1 \quad n=0,1, \ldots \tag{10}
\end{equation*}
$$

In such a regular case (i.e., at the exceptional $\gamma=-1 / 2$) the partner SUSY spectra $\left[E_{(\mathrm{L}, \mathrm{R})}^{(\gamma)}\right]_{n}$ reflect the shifts in equation (9) and exhibit the expected SUSY-type isospectrality,

$$
\begin{equation*}
E_{(\mathrm{L})}^{(-1 / 2)}=\{0,2,4,6,8, \ldots\} \quad E_{(\mathrm{R})}^{(-1 / 2)}=\{2,4,6,8, \ldots\} \tag{11}
\end{equation*}
$$

More rarely, one may arrive at similar conclusions using the more general or 'singular' HO Hamiltonian operators $H^{(\kappa)}$ which must be restricted to the smaller domain of $x \in(0, \infty)$ [or, if necessary, $x \in(-\infty, 0)$] and possess, therefore, the different energy spectrum $E_{n}^{(\mathrm{SHO})}=4 n+2 \ell+3$.

On this background it is easy to characterize the essence of the puzzle described by Jevicki and Rodrigues [16] as an attempted study of the relationship between the same operators defined on different domains (see [13] for more details). For illustration of the essence of this puzzle, it is most popular to pick up the $\gamma \neq-1 / 2$ superpotential (8), say, with $\gamma=1 / 2$. Then, the constant shifts in equation (9) give us immediately the very different 'partner' spectra

$$
\begin{equation*}
E_{(\mathrm{L})}^{(1 / 2)}=\{-2,0,2,4,6,8, \ldots\} \quad E_{(\mathrm{R})}^{(1 / 2)}=\{4,8,12,16, \ldots\} \tag{12}
\end{equation*}
$$

The explanation of the sudden loss of the desired SUSY-type isospectrality lies in the one-sided emergence of the centrifugal-like singularity $2 / x^{2}$ in the right SUSY partner $H_{(\mathrm{R})}$ only. At the same time, the left operator $H_{(\mathrm{L})}$ remains regular on the whole real line. The complete set of left normalizable wavefunctions is not constrained by the boundary condition applied to the right wavefunctions at the origin, $\psi_{(\mathrm{R})}(0)=0$. This observation might inspire a naive resolution of the JR paradox, based on the addition of the artificial and arbitrary left boundary condition $\psi_{(\mathrm{L})}(0)=0$. This would reduce the left spectrum to the set $E_{(\mathrm{L})}=\{0,4,8, \ldots\}$ which obeys the required SUSY isospectrality rule.

An alternative, less naive though much more cumbersome regularization recipe has been offered by Das and Pernice [17] who re-defined $H_{(\mathrm{L})}$ and $H_{(\mathrm{R})}$ slightly via an additional delta function at the origin. In effect, their construction proves equivalent [14] to the use of the Dirichlet boundary condition $\psi_{(\mathrm{R})}(0)=0$ for the right Hamiltonian in a rather unusual combination with the Neumann left boundary condition, $\partial_{x} \psi_{(\mathrm{L})}(0)=0$. They obtained

$$
\begin{equation*}
E_{(\mathrm{L})}^{(1 / 2)}=\{0,2,4,6,8, \ldots\} \quad E_{(\mathrm{R})}^{(1 / 2)}=\{2,4,6,8, \ldots\} \tag{13}
\end{equation*}
$$

In our present paper, we intend to emphasize that a much easier and more natural approach to the resolution of the JR regularization puzzle may be based on a downward complex shift of the real axis of x. Besides giving an outline of its essence (i.e., of an analytic PTSY extension of quantum mechanics), we shall also mention some of the possible consequences of this approach for a few other important SUSY-related models with singularities.

3. Regularized constructions within PTSUSY QM

3.1. An exactly solvable model

Harmonic-oscillator Hamiltonians

$$
H^{(\alpha)}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{\alpha^{2}-1 / 4}{r^{2}}+r^{2} \quad \alpha>0
$$

with Buslaev and Grecchi's [15] PTSY regularization of $r=x-\mathrm{i} \varepsilon$ (with real x, cf also [18] in this context) have thoroughly been studied in [19]. Their normalizable wavefunctions

$$
\begin{equation*}
\left\langle r \mid N^{(\varrho)}\right\rangle=\frac{N!}{\Gamma(N+\varrho+1)} \cdot r^{\varrho+1 / 2} \exp \left(-r^{2} / 2\right) \cdot L_{N}^{(\varrho)}\left(r^{2}\right) \tag{14}
\end{equation*}
$$

and energies

$$
E=E_{N}^{(\varrho)}=4 N+2 \varrho+2 \quad \varrho=-Q \cdot \alpha
$$

were described there as manifestly dependent on the quantum number $Q= \pm 1$ of the so-called quasi-parity. In the context of fields, this quantity proves intimately related to the more recent concept of the so-called charge-conjugation symmetry \mathcal{C} as introduced, e.g., in [9].

We already mentioned that the regularized superpotentials $W^{(\gamma)}$ enter the SUSY operators $A^{(\gamma)}=\partial_{q}+W^{(\gamma)}$ and $B^{(\gamma)}=-\partial_{q}+W^{(\gamma)}$ in a way which defines the 'left' and 'right' components of the super-Hamiltonian \mathcal{H},

$$
H_{(\mathrm{L})}=B \cdot A=\hat{p}^{2}+W^{2}-W^{\prime} \quad H_{(\mathrm{R})}=A \cdot B=\hat{p}^{2}+W^{2}+W^{\prime}
$$

For our present choice of $W=W^{(\gamma)}$ these SUSY partners are γ-dependent and, generically (i.e., at any complex γ), both of them are proportional to the different harmonic oscillators,
$H_{(\mathrm{L})}^{(\gamma)}=H^{(\alpha)}-2 \gamma-2 \quad H_{(\mathbb{R})}^{(\gamma)}=H^{(\beta)}-2 \gamma \quad \alpha^{2}=\gamma^{2} \quad \beta^{2}=(\gamma+1)^{2}$
with, conventionally, $\operatorname{Re} \alpha>0$ and $\operatorname{Re} \beta>0$.

3.2. SUSY under unbroken $\mathcal{P} \mathcal{T}$ symmetry

At all the real $\gamma \in(-\infty, \infty)$ we select $\alpha>0$ and $\beta>0$. This means that all the energies remain real and that one may distinguish between the following three regimes:

$$
\begin{cases}\text { positive } \gamma=\alpha>0 & \text { (dominant } \beta=\alpha+1 \text {) } \tag{16}\\ \text { small negative } \gamma=-\alpha>-1 & \text { (comparability, } \alpha+\beta=1 \text {) } \\ \text { large negative } \gamma=-\alpha<-1 & \text { (dominant } \alpha=\beta+1 \text {.) }\end{cases}
$$

For a given 'left' Hamiltonian $H_{(\mathrm{L})} \sim H^{(\alpha)}$ we have a choice between $\gamma= \pm \alpha$ giving the two alternative 'right' partners $H^{\left(\beta_{1,2}\right)}$ such that $\beta_{1,2}=1 \pm \alpha$ for small $\alpha<1 / 2$ while $\beta_{1}=|\alpha-1|<\alpha<\beta_{2}=\alpha+1$ for $\alpha>1 / 2$. Each pair of the SUSY partners $H_{(\mathrm{L}, \mathrm{R})}^{(\gamma)}$ generates the quasi-even and quasi-odd energies and these energies form an ordered quadruplet at any main quantum number n,

$$
\begin{cases}E_{(\mathrm{L})}^{(-\alpha)}=E_{(\mathrm{R})}^{(-\beta)}<E_{(\mathrm{L})}^{(+\alpha)}<E_{(\mathrm{R})}^{(+\beta)} & \text { for positive } \gamma \tag{17}\\ E_{(\mathrm{L})}^{(-\alpha)}<E_{(\mathrm{R})}^{(-\beta)}=E_{(\mathrm{L})}^{(+\alpha)}<E_{(\mathrm{R})}^{(+\beta)} & \text { for negative } \gamma>-1 \\ E_{(\mathrm{L})}^{(-\alpha)}<E_{(\mathrm{R})}^{(-\beta)}<E_{(\mathrm{L})}^{(+\alpha)}=E_{(\mathrm{R})}^{+(\beta)} & \text { for negative } \gamma<-1\end{cases}
$$

(mind and mend the misprints in table 1 in [13] and consult also figure 1 in [14]). The equal- n degeneracies may be emphasized by the square brackets '[' and ']' in,

$$
\begin{cases}{[4 n-4 \alpha]<4 n<4 n+4} & \text { for positive } \gamma \tag{18}\\ 4 n<[4 n+4 \alpha]<4 n+4 & \text { for negative } \gamma>-1 \\ 4 n<4 n+4<[4 n+4 \alpha] & \text { for negative } \gamma<-1\end{cases}
$$

By their (linear) α-dependence, they are distinguished from the usual non-equal- n degeneracies with the values of energies which do not vary with this parameter.

3.3. Spontaneously broken symmetry regime

The $\mathcal{P} \mathcal{T}$ symmetry of the 'left' Hamiltonians $H_{(\mathrm{L})} \sim H^{(\alpha)}$ becomes spontaneously broken at the purely imaginary α [19]. This results from the purely imaginary choice of γ in the superpotential $W^{(\gamma)}$. We have to distinguish between the two separate half-lines,

$$
\left\{\begin{array}{lll}
\delta>0 \text { in } \gamma=\mathrm{i} \delta & \alpha=\mathrm{i} \delta & \beta=1+\alpha \tag{19}\\
\eta>0 \text { in } \gamma=-\mathrm{i} \eta & \alpha=\mathrm{i} \eta & \beta=1-\alpha
\end{array}\right.
$$

On both of them the energies pertaining to the unshifted and $\mathcal{P T}$-symmetric Hamiltonian $H^{(\alpha)}$ occur in the complex-conjugate pairs $E_{n}^{(\pm \alpha)}$ [20]. This symmetry is broken by the shift $H^{(\alpha)} \rightarrow H_{(\mathrm{L})}^{(\gamma)}$ enforced by the SUSY factorization in equation (15). Hence, the supersymmetrization still generates the partially real spectra even at the purely imaginary $\alpha=\sqrt{\gamma^{2}}$,
$\left\{\begin{array}{llll}E_{(\mathrm{L})}^{(+\alpha)}=4 n & E_{(\mathrm{L})}^{(-\alpha)}=E_{(\mathrm{R})}^{(-\beta)}=4 n-4 \alpha & E_{(\mathrm{R})}^{(+\beta)}=4 n+4 & \text { for } \gamma=\mathrm{i} \delta \\ E_{(\mathrm{L})}^{(-\alpha)}=4 n & E_{(\mathrm{L})}^{(+\alpha)}=E_{(\mathrm{R})}^{(-\beta)}=4 n+4 \alpha & E_{(\mathrm{R})}^{(+\beta)}=4 n+4 & \text { for } \gamma=-\mathrm{i} \eta .\end{array}\right.$
We see that the imaginary components either vanish or are equal to 4γ. In the latter case the complex 'left' and 'right' energies coincide at a fixed n. The change of the sign of γ causes their complex conjugation. Simultaneously, the real parts of the energies are γ-independent and equidistant, and the characteristic degeneracy pattern $E_{(\mathrm{L})}(n)=E_{(\mathrm{R})}(n-1)$ holds for all the real levels in the spectrum exempting, as usual, the non-degenerate $n=0$ state.

3.4. Completely broken symmetry regime

We have seen that the spontaneous breakdown of the $\mathcal{P} \mathcal{T}$ symmetry of our initial or 'left' Hamiltonian $H_{(\mathrm{L})}$ leads to the mere partial complexification of the related energies $E_{(\mathrm{L})}$. One may reformulate this observation by saying that the SUSY construction keeps some 'right' energies $E_{(\mathrm{R})}$ real even though the $\mathcal{P} \mathcal{T}$ symmetry of the 'right' Hamiltonian $H_{(\mathrm{R})}$ itself is violated in the manifest manner.

The latter empirical rule may be easily generalized by induction. For this purpose, let us choose a positive integer N and start from the superpotential $W^{(\gamma)}$ with a complex parameter $\gamma=N+\mathrm{i} q \delta$ with $\delta>0$ and $q= \pm 1$. In the first step, we get the SUSY rules $\alpha^{2}=\gamma^{2}$ and $\beta^{2}=(\gamma+1)^{2}$ and make our α and β unique by the constraints $\operatorname{Re} \alpha>0, \operatorname{Im} \alpha=\delta>0$ and $\operatorname{Re} \beta>0$. This gives the two options,

$$
\beta_{1}=N-1+\mathrm{i} \delta<\alpha=N+\mathrm{i} \delta<\beta_{2}=N+1+\mathrm{i} \delta
$$

i.e., either a return to the previous N or the induction step towards the next one. Now we may summarize that at all these N the SUSY rules lead, up to the ambiguity in signs, to the same conclusion as above, giving

$$
E_{(\mathrm{L})}=\left\{\begin{array}{l}
4 n-4 \gamma \tag{20}\\
4 n
\end{array} \quad E_{(\mathrm{R})}=\left\{\begin{array}{l}
4 n-4 \gamma \\
4 n+4
\end{array}\right.\right.
$$

In this way, the picture is closed and complete: the class of the spiked harmonic oscillator SUSY partners possessing the same coinciding and partially real spectra (20) may all be derived from the superpotential $W^{(\gamma)}$ defined on the lattice of $\gamma=N \pm \mathrm{i} \delta$ with integers $N=0,1, \ldots$ and positive $\delta>0$. The $N=0$ observations of subsection 3.3 remain valid at all N. Also the $\mathcal{P} \mathcal{T}$-symmetric limit $\delta \rightarrow 0$ moves us to the exceptional points $\alpha=$ integer where one encounters the Jordan-block structures and unavoided crossings of the energy levels [19, 21, 22].

4. An alternative supersymmetrization

The most striking feature of the above SUSY scheme lies in the puzzling jumps between the different Hamiltonians $H^{(\alpha)}$ and $H^{(\beta)}$. The action of the linear differential operators $A^{(\gamma)}=\partial_{q}+W^{(\gamma)}$ and $B^{(\gamma)}=-\partial_{q}+W^{(\gamma)}$ on the states $\left|n^{(\gamma)}\right\rangle$ may change both their quantum number n and the parameter γ.

A transition from γ to quasi-parity Q and/or to the two 'physical' spike-strength parameters α and β clarifies that the 'natural' connection between the SUSY and annihilation and creation operators remains internally consistent in the exceptional $\alpha \rightarrow 1 / 2$ limit only. Fortunately, in all the other cases, a return $\beta \rightarrow \alpha$ to the original system may still be mediated by elementary operators. The determination of their action on the Laguerre polynomials appearing in the explicit form of our present wavefunctions is easy and the rule we need is given by the quadratic operators
$\mathbf{B}(\alpha)=B^{(-\gamma)} \cdot B^{(\gamma-1)} \equiv B^{(\gamma)} \cdot B^{(-\gamma-1)} \quad \mathbf{A}(\alpha)=A^{(-\gamma-1)} \cdot A^{(\gamma)} \equiv A^{(\gamma-1)} \cdot A^{(-\gamma)}$
of [13] (cf also [23] and [24]) which satisfy the relations

$$
\mathbf{B}(\alpha)\left|N^{(\gamma)}\right\rangle=c(N, \gamma)\left|(N+1)^{(\gamma)}\right\rangle \quad \mathbf{A}(\alpha)\left|(N+1)^{(\gamma)}\right\rangle=c(N, \gamma)\left|N^{(\gamma)}\right\rangle
$$

where $\gamma= \pm \alpha$ may now be complex while the formula $c(N, \gamma)=-4 \sqrt{(N+1)(N+\gamma+1)}$ of [13] remains unchanged.

The latter equations may be interpreted as the respective creation and annihilation of a state at a quasi-parity $Q=-\operatorname{sign}(\operatorname{Re} \gamma)$. One may, if necessary, exempt here the anomalous integers $\alpha=\alpha_{c}=0,1,2, \ldots$ at which one of the coefficients $c(N, \gamma)$ vanishes and where the two different energy levels cross or, in other words, where the Bender-Wu singularities [25] become real.

A possible deeper meaning of the peculiar second-order differential operators $\mathbf{B}(\alpha)$ and $\mathbf{A}(\alpha)$ is to be sought now by the straightforward calculation which reveals that

$$
\mathbf{A}(\alpha) \mathbf{B}(\alpha)-\mathbf{B}(\alpha) \mathbf{A}(\alpha) \equiv 8 H^{(\alpha)}
$$

This means that in spite of their unusual form, our innovated creation and annihilation operators exhibit an unexpected simplicity. A 'hidden' algebraic meaning of the above rule may be significantly clarified by the explicit evaluation of the two further commutators,

$$
\mathbf{A}(\alpha) H^{(\alpha)}-H^{(\alpha)} \mathbf{A}(\alpha) \equiv 4 \mathbf{A}(\alpha) \quad H^{(\alpha)} \mathbf{B}(\alpha)-\mathbf{B}(\alpha) H^{(\alpha)} \equiv 4 \mathbf{B}(\alpha)
$$

This implies that the three differential operators $\mathbf{A}(\alpha) / \sqrt{32}, \mathbf{B}(\alpha) / \sqrt{32}$ and $H^{(\alpha)} / 4$ of the second order are generators of the Lie algebra $\operatorname{sl}(2, R)$.

By the existence of the symmetries just revealed, we feel encouraged to define the new set of operators

$$
\mathbf{G}=\left[\begin{array}{cc}
\mathbf{G}_{(\mathrm{L})} & 0 \tag{21}\\
0 & \mathbf{G}_{(\mathrm{R})}
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
0 & 0 \\
\mathbf{A}(\alpha) & 0
\end{array}\right] \quad \tilde{\mathbf{Q}}=\left[\begin{array}{cc}
0 & \mathbf{B}(\alpha) \\
0 & 0
\end{array}\right]
$$

which may be perceived as a modified or alternative SUSY recipe. Once we put

$$
\begin{equation*}
\mathbf{G}_{(\mathrm{L})}=\mathbf{B}(\alpha) \mathbf{A}(\alpha) \quad \mathbf{G}_{(\mathrm{R})}=\mathbf{A}(\alpha) \mathbf{B}(\alpha) \tag{22}
\end{equation*}
$$

the new operators (21) generate a representation of the SUSY algebra $s l(1 / 1)$,

$$
\{\mathbf{Q}, \tilde{\mathbf{Q}}\}=\mathbf{G} \quad\{\mathbf{Q}, \mathbf{Q}\}=\{\tilde{\mathbf{Q}}, \tilde{\mathbf{Q}}\}=0 \quad[\mathbf{G}, \mathbf{Q}]=[\mathbf{G}, \tilde{\mathbf{Q}}]=0
$$

The elements of the innovated super-Hamiltonian-like two-by-two matrix \mathbf{G} are differential operators of the fourth order. They are defined, in the most compact form, by the products
(22) of the two boldface and mutually non-adjoint factors

$$
\begin{aligned}
& \mathbf{B}(\alpha)=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{\alpha^{2}-1 / 4}{(x-\mathrm{i} \varepsilon)^{2}}+(x-\mathrm{i} \varepsilon)^{2}-2(x-\mathrm{i} \varepsilon) \frac{\mathrm{d}}{\mathrm{~d} x}-1 \\
& \mathbf{A}(\alpha)=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{\alpha^{2}-1 / 4}{(x-\mathrm{i} \varepsilon)^{2}}+(x-\mathrm{i} \varepsilon)^{2}+2(x-\mathrm{i} \varepsilon) \frac{\mathrm{d}}{\mathrm{~d} x}+1
\end{aligned}
$$

The action of both the components of \mathbf{G} on our basis states is transparent,

$$
\mathbf{G}_{(\mathrm{L})}\left|N^{(\gamma)}\right\rangle=\Omega_{N}^{(\gamma)}\left|N^{(\gamma)}\right\rangle \quad \Omega_{N}^{(\gamma)}=16 N(N+\gamma) \quad \mathbf{G}_{(\mathrm{R})}\left|N^{(\gamma)}\right\rangle=\Omega_{N+1}^{(\gamma)}\left|N^{(\gamma)}\right\rangle .
$$

Tractable as the respective creation and annihilation operators, both $\mathbf{B}(\alpha)$ and $\mathbf{A}(\alpha)$ conserve the quasi-parity Q (i.e., the sign of the superscript γ) and enable us to split the Hilbert space into two separate 'halves' which may be marked by $Q= \pm 1$.

5. Towards realistic applications

One of the key messages of our present paper is its emphasis on the productivity of a combination of the algebraic ideas of supersymmetry (illustrated by the factorization (7) of some elementary harmonic-oscillator-type differential operators) with the ideas of $\mathcal{P} \mathcal{T}$ symmetry and analytic continuation (best exemplified by the singularity paradoxes and their comparatively easy analytic regularizations in the complex plane). Several merits of such a combined approach may be emphasized. First of all, one becomes able to reveal an algebraic background of the analytic properties (e.g., an analyticity-based complex shift of a complex coordinate found its algebraic pseudo-Hermitian explanation in $[18,20]$) and vice versa (for example, the algebraic 'spectral-equivalence' effect of the same shift has found its analyticcontinuation explanation in [2, 15] or [19]).

Of course, our natural ambition of extending similar parallels beyond the domain of the most elementary illustrative examples is limited by the numerous technical obstacles. In the second half of our paper, let us pay attention to their selected sample.

5.1. Angular Schrödinger equations in PTSUSY QM

In the introductory part of the review [1] (cf the picture no 2.2 there), it has been emphasized that free motion within a square well generates the whole SUSY family of exactly solvable models, the first nontrivial element of which is the single-well Pöschl-Teller problem on a finite interval,

$$
\begin{equation*}
H_{1 W}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \varphi^{2}}+V_{1 W}(\varphi) \quad V_{1 W}(\varphi)=\frac{A(A+1)}{\sin ^{2} \varphi} \quad \varphi \in(0, \pi) \tag{23}
\end{equation*}
$$

Bagchi et al [26] have emphasized that the same observation remains valid when we consider the PTSY generalization of this model.

It has been noted in our recent paper [27] that the merely slightly modified angular differential equation

$$
\begin{equation*}
H_{4 W}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \varphi^{2}}+V_{4 W}(\varphi) \quad V_{4 W}(\varphi)=\frac{A(A+1)}{\sin ^{2} 4 \varphi} \quad \varphi \in(0, \pi / 4) \tag{24}
\end{equation*}
$$

is a core of the construction of the bound states in the non-central potentials

$$
\begin{equation*}
V^{(S I)}(X, Y)=X^{2}+Y^{2}+\frac{G}{X^{2}}+\frac{G}{Y^{2}} \tag{25}
\end{equation*}
$$

of the Smorodinsky-Winternitz 'superintegrable' family in two dimensions [28]. In parallel, the famous Calogero's [29] three-body bound-state model represented by the separable partial differential equation

$$
\begin{equation*}
\left[-\frac{\partial^{2}}{\partial X^{2}}-\frac{\partial^{2}}{\partial Y^{2}}+X^{2}+Y^{2}+\frac{g}{2 X^{2}}+\frac{g}{2(X-\sqrt{3} Y)^{2}}+\frac{g}{2(X+\sqrt{3} Y)^{2}}\right] \Phi(X, Y)=\mathcal{E} \Phi(X, Y) \tag{26}
\end{equation*}
$$

has a very similar ordinary differential angular part,

$$
\begin{equation*}
H_{6 W}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \varphi^{2}}+V_{6 W}(\varphi) \quad V_{6 W}(\varphi)=\frac{A(A+1)}{\sin ^{2} 6 \varphi} \quad \varphi \in(0, \pi / 6) \tag{27}
\end{equation*}
$$

Unfortunately, the $\mathcal{P} \mathcal{T}$ symmetrization of the latter two models does not lead to any simplifications similar to those which we witnessed, e.g., in section 3.1. At this point, it is our sad duty to say that an opposite observation is true. One of the main reasons is that in the Hermitian version of both the above-mentioned models (where the Pöschl-Teller force appears in the angular part of the Schrödinger equation), Dirichlet boundary conditions are imposed at both the ends of the interval of the angle φ. This reflects the presence of strongly repulsive barriers at both these points.

After the PTSY regularization of the coordinate, we arrive at the different family of eigenvalue problems,

$$
\begin{align*}
& H_{M W}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \varphi^{2}}+V_{M W}(\varphi) \quad V_{M W}(\varphi)=\frac{A(A+1)}{\sin ^{2} M \varphi} \tag{28}\\
& M=1,2, \ldots \quad \varphi=\alpha-\mathrm{i} \varepsilon \quad \alpha \in(0, \pi) .
\end{align*}
$$

Our choice of the complex shift $\varepsilon>0$ opens the possibility of the tunnelling through the barriers (cf the particular $M=4$ and $M=6$ results in [30] and [31], respectively). This means that we must impose the different, periodic boundary conditions at the endpoints of our domain of the angular coordinate α which is M times bigger.

The phenomenon of tunnelling between neighbouring (sometimes called 'Weyl's') chambers is, in this context, a source of new physics as well as of a significantly worsened mathematical insight into the structure of the PTSY solutions at any $M \geqslant 2$. This has been illustrated on a schematic semi-numerical double-well model in [27].

5.2. Relativistic PTSUSY quantum mechanics?

Once we moved to the non-Hermitian Hamiltonians, the scope of quantum mechanics (including also its specific regularization aspects) finds a fairly natural extension to the domains with relativistic kinematics.

In order to be more specific, let us pick up the well-known example of the Klein-Gordon equation in the units $\hbar=c=1$,

$$
\begin{equation*}
\left(\mathrm{i} \partial_{t}\right)^{2} \Psi^{(\mathrm{KG})}(x, t)=H^{(\mathrm{KG})} \Psi^{(\mathrm{KG})}(x, t) . \tag{29}
\end{equation*}
$$

This equation is not too different from its Schrödinger non-relativistic predecessor

$$
\begin{equation*}
\mathrm{i} \partial_{t} \Psi^{(\mathrm{NR})}(x, t)=H^{(\mathrm{NR})} \Psi^{(\mathrm{NR})}(x, t) \tag{30}
\end{equation*}
$$

After we abbreviate $\varphi_{1}=\mathrm{i} \partial_{t} \Psi^{(\mathrm{KG})}(x, t)$ and $\varphi_{2}=\Psi^{(\mathrm{KG})}(x, t)$, the relativistic evolution may be described by the equivalent Feshbach-Villars [32] first-order differential equation presented here in the form

$$
\mathrm{i} \partial_{t}\binom{\varphi_{1}}{\varphi_{2}}=\left(\begin{array}{cc}
0 & H^{(\mathrm{KG})} \tag{31}\\
1 & 0
\end{array}\right) \cdot\binom{\varphi_{1}}{\varphi_{2}} .
$$

In contrast to the freedom of option between Hermiticity and pseudo-Hermiticity for the current non-matrix Hamiltonians,

$$
\begin{equation*}
\left[H^{(\mathrm{NR}, \mathrm{KG})}\right]^{\dagger}=\eta H^{(\mathrm{NR}, \mathrm{KG})} \eta^{-1} \quad \eta=\eta^{\dagger} \tag{32}
\end{equation*}
$$

the two-by-two Feshbach-Villars (FV) matrix operator and equation prove manifestly nonHermitian,
$\left[H^{(\mathrm{FV})}\right]^{\dagger}=\mathcal{P} H^{(\mathrm{FV})} \mathcal{P}^{-1} \quad H^{(\mathrm{FV})}=\left(\begin{array}{cc}0 & H^{(\mathrm{KG})} \\ 1 & 0\end{array}\right) \quad \mathcal{P}=\left(\begin{array}{ll}0 & \eta \\ \eta & 0\end{array}\right)$.
We see that we have to pay the price for the transition from the non-relativistic equation (31) to its relativistic descendant (29). Irrespective of whether the initial scalar operator $H^{(\mathrm{KG})}$ itself is Hermitian, quasi-Hermitian or pseudo-Hermitian (in correspondence to the respective 'metric' $\eta=I, \eta>0$ or merely non-singular $\eta \neq 0$ in equation (32)), its new FeshbachVillars representation $H^{(\mathrm{FV})}$ remains non-Hermitian.

One may reverse this argument as follows. Once we discover the merits of a regularization (e.g., of any centrifugal-like singularity in $H^{(\mathrm{KG})}$) by its (e.g., constant shift) complexification, an extension of our previous results to the new relativistic context becomes almost straightforward. In spite of the fact that any detailed analysis in this direction would already lie beyond the scope of our present paper, we must emphasize that the auxiliary diagonalization of $H^{(\mathrm{FV})}$,

$$
\left(\begin{array}{cc}
0 & H^{(\mathrm{KG})} \tag{34}\\
1 & 0
\end{array}\right) \cdot\binom{\left|n_{1}^{(\pm)}\right\rangle}{\left|n_{2}^{(\pm)}\right\rangle}=E_{n}^{(\pm)}\binom{\left|n_{1}^{(\pm)}\right\rangle}{\left|n_{2}^{(\pm)}\right\rangle}
$$

remains feasible and facilitated by its partitioning which means that

$$
\begin{equation*}
H^{(\mathrm{KG})}\left|n_{2}^{(\pm)}\right\rangle=\left[E_{n}^{(\pm)}\right]^{2}\left|n_{2}^{(\pm)}\right\rangle \quad\left|n_{1}^{(\pm)}\right\rangle=E_{n}^{(\pm)}\left|n_{2}^{(\pm)}\right\rangle \tag{35}
\end{equation*}
$$

Hence, for all the positive operators $H^{(\mathrm{KG})}>0$ and for all the present SUSY and/or PTSY regularization purposes we may work with the modified Schrödinger-type equation (35), knowing that the superscript ${ }^{(\pm)}$indicates merely the sign of the real 'energy' $E_{n}^{(\pm)} \equiv \pm\left|E_{n}^{(\pm)}\right|$. In parallel, one still has to keep in mind that even for all the Hermitian $H^{(\mathrm{KG})}{ }^{\text {with }} \eta=I$, the FV time-evolution itself remains pseudo-unitary [33] since

$$
\mathcal{P}=\left(\begin{array}{ll}
0 & I \tag{36}\\
I & 0
\end{array}\right)=\left[\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right)\right]\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left[\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right)\right] .
$$

Thus, the quantized Klein-Gordon system may be used and presented as an archetypal physical PTSY model $[34,35]$, weakening the above limitation of our scope to the mere non-relativistic cases.

6. Concluding remarks and open questions

Let us summarize that without a transition to the language of PTSY QM, virtually all the central oscillators have a perceivably different mathematical interpretation at $D=1$ (in one dimension) and at $D>1$ (when there emerges a strongly singular centrifugal force in equation (1)). After this transition, the mathematical difference disappears with the reemergence of the safely normalizable bound states of an even quasi-parity. In the new language, it is less puzzling and purely technical to select and characterize the unphysical character of all the quasi-even states at all the higher spatial dimensions $D \neq 1$.

We reminded the readers that the difference between the present and vanishing centrifugal singularities (at $D>1$ and $D=1$, respectively) becomes even much more unpleasant after
one starts working in the formalism of SUSY QM. We reviewed briefly a few standard attempts at a resolution of this problem (they did not prove too satisfactory, anyhow) and showed that the analytic continuation techniques mediated by the above-mentioned PTSY mathematical formalism offer one of the best regularization recipes. In particular, it enabled us to complete our older results and to characterize the PTSUSY structure of the spiked harmonic oscillator models at any complex value of the strength $\alpha^{2}-1 / 4$ of their centrifugal-like spike.

Of course, the study of this subject is far from being completed. We have outlined one of the eligible directions of future research by extending the scope of the present paper to the exactly solvable angular equations. As we mentioned, their importance lies in their indispensable role in the exact solvability of several Hermitian models (namely, in the three-body Calogero model and in the two-dimensional Smorodinsky-Winternitz non-central oscillator etc). In such a setting, we might emphasize that within the broader framework of PTSY QM these angular equations need not even remain exactly solvable at all.

A few further open questions may also be formulated in the area of a less direct overlap between SUSY QM and PTSY QM. As we emphasized, the relativistic Klein-Gordon equation does not provide a fully consistent description of a spinless particle but still, it represents one of the phenomenologically most valuable benchmark models in PTSY QM. In the two forthcoming appended remarks, we intend to underline the existence of the new mathematical challenges concerning the viability of its possible transfer into the (possibly, regularized) formalism of SUSY QM.

6.1. Feshbach-Villars Hamiltonians and SUSY

As we already mentioned, there exist several close formal parallels between the Schrödinger and Klein-Gordon equations in the present regularization and analytic-continuation context. The extent of these parallels is less clear when we start speaking an algebraic language. For definiteness of a brief exposition of this problem, let us assume that in a way paralleling the constructions of the non-relativistic SUSY QM, the left (Hermitian or non-Hermitian and regular or singular) Klein-Gordon operator is factorizable, $H_{(\mathrm{L})}^{(\mathrm{KG})}=b \cdot a$. This means that we may also factorize the two-by-two Feshbach-Villars matrix operator postulating, for example, that
$H_{(\mathrm{L})}^{(\mathrm{FV})}=\left(\begin{array}{cc}0 & H_{(\mathrm{L})}^{(\mathrm{KG})} \\ I & 0\end{array}\right)=B \cdot A \quad A=\left[\begin{array}{ll}d & 0 \\ 0 & a\end{array}\right] \quad B=\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right] \quad c \cdot d=I$.
In a subtle way, such a postulate proves mathematically inconsistent. Indeed, in the usual SUSY framework, operators (37) have to be inserted in the above-mentioned general definition (3) of the supercharges \mathcal{Q} and $\tilde{\mathcal{Q}}$, respectively, giving

$$
S_{\mathrm{SUSY}, A}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{38}\\
0 & 0 & 0 & 0 \\
d & 0 & 0 & 0 \\
0 & a & 0 & 0
\end{array}\right] \quad S_{\mathrm{SUSY}, B}=\left[\begin{array}{cccc}
0 & 0 & 0 & b \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and obeying the same graded algebra as above. Routinely, the partner Feshbach-Villars Hamiltonian becomes defined by the formula

$$
H_{(\mathrm{R})}^{(\mathrm{FV})}=\left(\begin{array}{cc}
0 & H_{(\mathrm{R})}^{(\mathrm{KG})} \tag{39}\\
I & 0
\end{array}\right)=A \cdot B \quad H_{(\mathrm{R})}^{(\mathrm{KG})}=d \cdot b \quad a \cdot c=I .
$$

This means that we need to find the quadruplet of operators a, b, c and d where, in a suitable basis, the initial or 'input' factors a and b may be visualized as having the respective annihilation- and creation-operator-type one-diagonal and infinite-dimensional matrix forms,

$$
a=\left(\begin{array}{ccccc}
0 & a_{0} & 0 & \ldots & \tag{40}\\
& 0 & a_{1} & 0 & \ldots \\
& & & \ddots &
\end{array}\right) \quad b=\left(\begin{array}{cccc}
0 & \ldots & & \\
b_{0} & 0 & \ldots & \\
0 & b_{1} & 0 & \ldots \\
& & \ddots &
\end{array}\right) .
$$

In this language the constraint $a \cdot c=I$ implies that in the matrix

$$
c=\left(\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & x_{3} & \cdots \tag{41}\\
1 / a_{0} & 0 & \cdots & & \\
0 & 1 / a_{1} & 0 & \cdots & \\
0 & 0 & 1 / a_{2} & 0 & \cdots \\
& & & \ddots &
\end{array}\right)
$$

the first row remains arbitrary. Unfortunately, this freedom is not enough for the existence of a solution of our original requirement $c \cdot d=I$. Indeed, even if we omit the upper-left element of the latter matrix requirement, we get the unique solution for this weaker constraint,

$$
d=\left(\begin{array}{ccccc}
0 & a_{0} & 0 & \cdots & \tag{42}\\
& 0 & a_{1} & 0 & \cdots \\
& & & \ddots &
\end{array}\right) \equiv a
$$

Vice versa, we may evaluate the product

$$
c \dot{d}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & & \tag{43}\\
0 & 1 & 0 & \ldots & \\
0 & 0 & 1 & 0 & \ldots \\
& & & \ddots &
\end{array}\right) \equiv \Pi=\Pi^{2} \neq I .
$$

This completes our constructive proof that the requirement $c \cdot d=I$ has no solution at all. In other words, the only available Klein-Gordon-inspired super-Hamiltonian
$H_{\mathrm{KG} \text { SUSY }}=\left[\begin{array}{cccc}0 & H_{(\mathrm{L})}^{(\mathrm{KG})} & 0 & 0 \\ \Pi & 0 & 0 & 0 \\ 0 & 0 & 0 & H_{(\mathrm{R})}^{(\mathrm{KG})} \\ 0 & 0 & I & 0\end{array}\right] \quad H_{(\mathrm{L}, \mathrm{R})}^{(\mathrm{KG})}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{(\mathrm{L}, \mathrm{R})}^{(\mathrm{KG})}(x)$
connects merely the right Klein-Gordon field with an artificial, 'constrained' left SUSY partner which might only be interpreted as a quasi-Klein-Gordon system equipped with an additional projection-operator constraint $n_{1}^{(\pm)}=\Pi n_{1}^{(\pm)}$at all n. Its physical interpretation remains unclear.

6.2. Generalized time-evolution of kth order

When we compare the above Schrödinger and Klein-Gordon SUSY QM constructions, we may note that they may be interpreted, quite formally, as the first two elements of an infinite hierarchy of k th order time-evolution equations

$$
\begin{equation*}
\left(\mathrm{i} \partial_{t}\right)^{k} \Psi^{(k)}(x, t)=H^{(k)} \Psi^{(k)}(x, t) \quad k=1,2,3, \ldots \tag{45}
\end{equation*}
$$

In a way which extends and parallels our previous notation we may put

$$
\begin{equation*}
\varphi_{j}=\mathrm{i} \partial_{t} \varphi_{j+1} \quad j=1,2, \ldots, k-1 \quad \varphi_{k}=\Psi^{(k)}(x, t) \tag{46}
\end{equation*}
$$

and arrange equation (45) in the k-dimensional matrix form

$$
\mathrm{i} \partial_{t}\left(\begin{array}{c}
\varphi_{1} \tag{47}\\
\varphi_{2} \\
\varphi_{3} \\
\vdots \\
\varphi_{k}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & H^{(k)} \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\vdots \\
\varphi_{k}
\end{array}\right) .
$$

This may be read as the new matrix problem $\mathrm{i}_{t} \vec{\varphi}^{(k)}=\mathcal{H}^{(k)} \vec{\varphi}^{(k)}$ where the matrix of the Hamiltonian obeys the pseudo-Hermiticity condition

$$
\left[\mathcal{H}^{(k)}\right]^{\dagger}=\mathcal{P} \mathcal{H}^{(k)} \mathcal{P}^{-1} \quad \mathcal{P}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & \eta \tag{48}\\
0 & \cdots & 0 & \eta & 0 \\
\vdots & & \therefore & & \vdots \\
0 & \eta & 0 & \cdots & 0 \\
\eta & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

The metric operators η must be Hermitian and invertible and may become positive or equal to unit operators in the respective quasi-Hermitian or Hermitian special cases. In this sense, the Schrödinger $(k=1)$ and Klein-Gordon $(k=2)$ evolution equations may be viewed as special cases of a more general scheme without, of course, any immediate applications within quantum physics at $k \geqslant 3$.

Acknowledgment

Work partially supported by the grant no A 1048302 of GA AS CR. Additional support emerged from the resources of the University of Valladolid, Spain, and last but not least, from the AS CR projects K1048102, K1010104 and AV0Z1048901 of NPI.

References

[1] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251267
[2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 245243 Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 402201
[3] Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 7551
Robnik M and Berry M V 1986 J. Phys. A: Math. Gen. 19669 Delabaere E and Pham F 1998 Phys. Lett. A 25025 Fernández F M, Guardiola R, Ros J and Znojil M 1998 J. Phys. A: Math. Gen. 3110105 Mostafazadeh A 2003 J. Phys. A: Math. Gen. 367081 Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 711095
[4] Witten E 1981 Nucl. Phys. B 188513
[5] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer) Bagchi B K 2001 Supersymmetry in Quantum and Classical Mechanics (New York: Chapman and Hall) Cooper F, Khare A and Sukhatme 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[6] Bender C M and Milton K A 1997 Phys. Rev. D 55 R3255
Mostafazadeh A 1998 J. Math. Phys. 394499 Bender C M and Milton K A 1999 J. Phys. A: Math. Gen. 32 L87
[7] Levai G and Znojil M 2001 Mod. Phys. Lett. A 161973 Levai G, Cannata and Ventura A 2002 Phys. Lett. A 300271
[8] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys., NY 21374
[9] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89270401
Mostafazadeh A 2003 Preprint quant-ph/0310164
Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 92119902 (erratum)
[10] Streater R F and Wightman A S 1964 PCT, Spin and Statistics and All That (New York: Benjamin) Mostafazadeh A 2003 J. Math. Phys. 44974
[11] Dirac P A M 1942 Proc. R. Soc. A 1801
Pauli W 1043 Rev. Mod. Phys. 15175
Ramirez A and Mielnik B 2003 Rev. Mex. Fis. 49S2 130
[12] Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Phys. Lett. B 483284
Levai G and Znojil M 2002 J. Phys. A: Math. Gen. 358793
Znojil M 2003 Rend. Circ. Mat. Palermo 71 (Suppl.) 199
[13] Znojil M 2002 J. Phys. A: Math. Gen. 352341
[14] Znojil M 2003 Nucl. Phys. B 662554
[15] Buslaev V and Grecchi V 1993 J. Phys. A: Math. Gen. 265541
[16] Jevicki A and Rodrigues J 1984 Phys. Lett. B 14655
[17] Das A and Pernice S 1999 Nucl. Phys. B 561357
[18] Ahmed Z 2001 Phys. Lett. A 29019
[19] Znojil M 1999 Phys. Lett. A 259220
[20] Mostafazadeh A 2002 J. Math. Phys. 432814
[21] Herbst I 1999 private communication
Heiss W D and Harney H L 2001 Eur. Phys. J. D 17149
Kleefeld F 2004 Proc. Inst. Math. NAS Ukraine 501367
[22] Gohberg I, Lancaster P and Rodman L 1983 Matrices and Indefinite Scalar Products (Basel: Birkhäuser) Mostafazadeh A 2002 J. Math. Phys. 436343 Mostafazadeh A 2003 J. Math. Phys. 44943 (erratum)
[23] Andrianov A A, Ioffe M V and Spiridonov V P 1993 Phys. Lett. A 174273
Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1995 Int. J. Mod. Phys. A 102683
Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246219
Klishevich S M and Plyushchay M S 2002 Nucl. Phys. B 628217
Mostafazadeh A 2002 Nucl. Phys. B 640419
Gunther U and Stefani F 2003 J. Math. Phys. 443097
[24] Bagchi B, Mallik S and Quesne C 2002 Int. J. Mod. Phys. A 1751
[25] Bender C M and Wu T T 1969 Phys. Rev. 1841231
[26] Bagchi B, Mallik S and Quesne C 2002 Mod. Phys. Lett. A 171651
[27] Znojil M 2003 J. Phys. A: Math. Gen. 367825
[28] Friš I, Mandrosov V, Smorodinsky J, Uhlǐr M and Winternitz P 1965 Phys. Lett. 16354
Evans N W 1991 J. Math. Phys. 323369
Grosche C, Pogosyan G S and Sissakian A N 1995 Fortsch. Phys. 4345
[29] Calogero F 1969 J. Math. Phys. 102191
Wojciechowski S R 1983 Phys. Lett. A 95279
[30] Jakubský V 2004 Czech. J. Phys. 5467
[31] Znojil M and Tater M 2001 Phys. Lett. A 284225
[32] Feshbach H and Villars F 1958 Rev. Mod. Phys. 3024
[33] Znojil M 2004 Rend. Circ. Mat. Palermo 72 (Suppl.) 211 (Preprint math-ph/0104012)
[34] Mostafazadeh A 2003 Class. Quantum Grav. 20155 Mostafazadeh A 2004 Ann. Phys., NY 3091
[35] Znojil M 2004 Czech. J. Phys. 54151

